DNA segregation in Escherichia coli cells with 5-bromodeoxyuridine-substituted nucleoids.
نویسندگان
چکیده
The pattern of segregation of DNA in Escherichia coli K-12 was analyzed by labeling replicating DNA with 5-bromodeoxyuridine followed by differential staining of nucleoids. Three types of visible arrangement were found in four-nucleoid groups derived from a native nucleoid after two replication rounds. Type A, segregation of both old strands toward cell poles, appeared with the highest frequency (0.6 to 0.8). Type B, segregation of one old strand toward the cell pole and the other toward the cell center, was twice as frequent as type C, segregation of both old strands toward the cell center. These results confirm previous data showing that DNA segregation in E. coli is nonrandom while presenting a certain degree of randomness. The proportions of the three indicated types of arrangement suggest a new probabilistic model to explain the observed segregation pattern. It is proposed that DNA strands segregate either nonrandomly, with a probability of between 0 and 1, or randomly. In nonrandom segregation, both old strands are always directed toward cell poles. Experimental data reported here or by other authors fit better with the predictions of this model than with those of other previously proposed proposed deterministic or probabilistic models.
منابع مشابه
Chloramphenicol causes fusion of separated nucleoids in Escherichia coli K-12 cells and filaments.
Chloramphenicol is frequently used for better visualization of the Escherichia coli nucleoid. Here, we show that chloramphenicol causes not only rounding off of the nucleoid but also fusion of as many as four separated nucleoids. Nucleoid fusion occurred in fast-growing cells and in filaments obtained by dicF antisense RNA induction or in ftsZ84(Ts) and pbpB(Ts) mutants. Thus, treatment with ch...
متن کاملCompaction of the Escherichia coli nucleoid caused by Cyt1Aa.
Compaction of the Escherichia coli nucleoid in the cell's centre was associated with the loss of colony-forming ability; these effects were caused by induction of Cyt1Aa, the cytotoxic 27 kDa protein from Bacillus thuringiensis subsp. israelensis. Cyt1Aa-affected compaction of the nucleoids was delayed but eventually more intense than compaction caused by chloramphenicol. The possibility that s...
متن کاملThe Stringent Response and Cell Cycle Arrest in Escherichia coli
The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication ori...
متن کاملThe spatial biology of transcription and translation in rapidly growing Escherichia coli
Single-molecule fluorescence provides high resolution spatial distributions of ribosomes and RNA polymerase (RNAP) in live, rapidly growing Escherichia coli. Ribosomes are more strongly segregated from the nucleoids (chromosomal DNA) than previous widefield fluorescence studies suggested. While most transcription may be co-translational, the evidence indicates that most translation occurs on fr...
متن کاملDynamic nature of SecA and its associated proteins in Escherichia coli
Mechanical properties such as physical constraint and pushing of chromosomes are thought to be important for chromosome segregation in Escherichia coli and it could be mediated by a hypothetical molecular "tether." However, the actual tether that mediates these features is not known. We previously described that SecA (Secretory A) and Secretory Y (SecY), components of the membrane protein trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 158 1 شماره
صفحات -
تاریخ انتشار 1984